
 R Configuration Models
Last Update: 12-Aug-25

R Configuration Model.docx Page 1 of 7

Contents

Definitions .. 1
Summary... 1
Background ... 1
Design Concept ... 1
General Flow ... 2
Detail .. 4
Thoughts for the future .. 7

Definitions
Project has two meanings we need to clarify. To avoid confusion, we will use the word “study” when referring
to the second meaning, even if the work you are doing is not a ‘study.’

· R Project (.Rproj extension) – An R file that allows relative referencing of files in a directory and subdirectory
without hard coded “setwd” commands and provides other benefits.
https://www.r-bloggers.com/2020/01/rstudio-projects-and-working-directories-a-beginners-guide/

· Project meaning a set of activities focused on a goal (e.g. The project to study stamp collecting as a neurosis.)
https://www.merriam-webster.com/dictionary/project

Summary
This paper covers a simple model for creating a multi-layer configuration for R users. It applies to single and
multi-user environments. The model handles both ‘global’ configurations, as well as project-specific
configurations. The paper assumes a working knowledge of R syntax.

Background
If you are doing work that requires consistency, and you want to reduce code duplication then having a
method to centralize settings and values across users and programs then having a configuration process is
critical. We will cover the general design of the model presented, then look deeper into specific uses. My
model was created from work I did at NEHRI where we had dispersed users and dispersed working
environments. We needed a way to have code know where certain files were stored depending on the
environment. We also wanted to use template programs that could rely on functions working consistently
without user intervention.

Design Concept
We start at the bottom and move up. The first step is having a “study” level configuration file. This is the
lowest level and does require some code that provides the system with information that it cannot know about
on its own. An example is a folder that is NOT a subdirectory of that area.

https://www.r-bloggers.com/2020/01/rstudio-projects-and-working-directories-a-beginners-guide/
https://www.merriam-webster.com/dictionary/project

R Configuration Model.docx Page 2 of 7

The beauty of the project concept in R is that the working directory is set based on the project folder and even
if the folder moves or is duplicated across environments (such as Dropbox local copies), the relative references
of subfolders do not change. But if you have an object (such as a set of huge reference data files) you do not
want to copy them into every project that uses them just so the files can be referenced as a subdirectory of
each project.

The next step up the chain is a global configuration file. This can contain values that every project should have
access to, or every user’s R session should have as an initial setting. We will show examples of this for
function options, and global functions not in a package, and values.

General Flow
We will now show the general flow of the parts.

1. Start R Studio directly from the project file, or through R Studio dialog.
2. Open the R Markdown standardized template.
3. Call the study-specific “_ProjectSetup.R” file which checks where it is and then…
4. Call the “_GlobalSetup.R” file.
5. “_GlobalSetup.R” sets values, options and if there are global functions not in a package, brings them in.
6. Return to the “_ProjectSetup.R” and sets any study-specific values, study-specific options and if there

are study-specific functions not in a package, brings them in.
7. The R Markdown file continues with whatever work it is meant to do.
8. End

R Configuration Model.docx Page 3 of 7

R Configuration Model.docx Page 4 of 7

Detail
We will now show the general flow of the parts.

1. Opening the .Rproj directly or via R Studio dialog

2. We open an R Markdown file using the R Studio dialog (not by opening from File Explorer which by passes
Step 1).

3. We source (call) the “_ProjectSetup.R” file. The file resides in the same folder as the R project file.

source("_ProjectSetup.R")

 “_ProjectSetup.R” Code Explanation
--#
_ProjectSetup.R - Project specific settings and functions
--#

Determine the global setup file location
if (nchar(Sys.getenv("Name_of_environ_Variable")) > 0) {
 # There is an environment variable available
 publicDir <- paste0(Sys.getenv("Name_of_environ_Variable "))

} else if (file.exists("//server1/folder1”)) {
 # We are on the X network
 publicDir <- "//server1/folder1"

} else if (file.exists("//server2/folder1”)) {
 # We are on the Y network
 publicDir <- "//server2/folder1"
}

 # You need to manually specify where the Public folder
 # is on your computer if not in a known environment.
 if (!exists("publicDir")) {
 publicDir <- NA
 }

If users are working on local
laptops using a syncing service
such as Dropbox, then the
easiest is to create a Windows
system environment variable
that points to the Dropbox
“public” location on their
specific computer.

Otherwise, it checks to see if
they are on any number of
different networks. The key
point is that in each computing
environment, the global folder
is identified and known.

The downside of this approach
is that this code must be in
each _projectSetup.R Without
configuring each workstation
and adding scripts that run at
startup, R cannot know where
to look without this code.

R Configuration Model.docx Page 5 of 7

 “_ProjectSetup.R” Code Explanation
if (exists("publicDir")&!is.na(publicDir)) {
 source(paste0(publicDir, "/folder/_GlobalSetup.R"), echo=FALSE)

} else {
 publicDir <- ""
 print("*** ERROR: publicDir not found ***")
 print("Check if network public folder is unavailable.")
}

Now that we know the
location, we can call the
“_GlobalSetup.R.”

For now, we will explain the
rest of the code in
“_ProjectSetup.R” and explain
“_GlobalSetup.R” in the next
table.

-- #
EDIT AFTER THIS POINT ONLY #
-- #

sourceDir <- paste0(baseDir,"1.Source/")
workingDir <- paste0(baseDir,"2.Working/")
analyticDir <- paste0(baseDir,"3.Analytic/")

Project specific parameters #
(those used in multiple programs) #
Edit below as needed, remove vars #
not needed in the project #
--------------------------------- #

Flextable project defaults
flextable::set_flextable_defaults(
 font.size = 8, font.family = "Calibri",
 font.color = "#333333",
 table.layout = "autofit",
 border.color = "gray",
 padding.top = 3, padding.bottom = 3,
 padding.left = 4, padding.right = 4)

 cat("Project specific parameters","\n")
 cat("---------------------------","\n")

 ProjectTitle <- “Stamp Collectors Study”

 # show in the log
 cat("ProjectTitle: ", ProjectTitle,"\n")

--------- Functions ---------- #

We load any files found in the project function location

rFiles <- dir(paste0("/StudyFunctions/"), pattern="*.R")
for (rFile in rFiles) {
 source(paste0("/StudyFunctions/”, rFile))
}
rm(rFile, rFiles)

--#
_ProjectSetup.R end
--#

These are examples and would
be customized for your study.

Here the study wants to ensure
specific font and style when
using FlexTable, so having this
here means the entire study
has consistent look to FlexTable
output.

We ensure the activity appears
in the output by displaying any
values we set.

Here the study has study-
specific functions (not in a
package) that it wants to bring
in for every program.

Because this is wildcard based,
you just drop files in the folder
and do not have to hard code
bringing them in individually.

R Configuration Model.docx Page 6 of 7

4. The “_GlobalSetup.R” will execute before the rest of the “_ProjectSetup.R” code as explained above.

 “_GlobalSetup.R” Code Explanation
--#
_GlobalSetup.R - General global settings and functions
--#

History
YYYY MM DD - Author – What changed.

--------- Cleanup ----------- #

Remove any files in C:\X if it exists
if (base::file.exists("C:/X")) {
a <- base::file.remove(dir("C:/X", pattern = "\\.png$", full.names =
TRUE))
 rm(a)
}

It is always a good idea to have
a change log in a file with this
importance.

Here we show an example of
cleaning up junk files.

--------- Settings ---------- #

startingTime <- Sys.time()
scriptInfo <- rstudioapi::getSourceEditorContext()$path
baseDir <- stringr::str_remove(scriptInfo, basename(scriptInfo))

Summarytools defaults
summarytools::st_options(
 bootstrap.css = FALSE,
 plain.ascii = FALSE,
 style = "rmarkdown",
 dfSummary.silent = TRUE,
 footnote = NA,
 descr.silent = TRUE,
 tmp.img.dir = "C:/X",
 subtitle.emphasis = FALSE)

24 color pallet for plots
c24 <- c(
 "dodgerblue2", "#E31A1C", # red
 "green4",
 "#6A3D9A", # purple
 "#FF7F00", # orange
 "gold1",
 "skyblue2", "#FB9A99", # lt pink
 "palegreen2",
 "#CAB2D6", # lt purple
 "#FDBF6F", # lt orange
 "gray70", "khaki2",
 "maroon", "orchid1", "deeppink1", "blue1", "steelblue4",
 "darkturquoise", "green1", "yellow4", "yellow3",
 "darkorange4", "brown"
)

Here we can set global options
and values.

We tell R what name to use if
we need to refer to the calling
R Markdown program. We set
a starting time in case we want
to time how long the session
tool (as part of knitting).

We set up defaults for anyone
using SummaryTools to ensure
consistent output and
functionality.

We create a 24-color pallet, so
the users do not have it. Again,
this is just an example.

It could be a variable with the
copyright notice to include in
every output, etc.

--------- Libraries ---------- #

if (grepl("//server1/", publicDir)) {
 # Environment 1
 .libPaths(c(.libPaths(), "//server1/folder/R_Packages"))
} else if (grepl("//server2/", publicDir)) {
 # Environment 2
 .libPaths(c(.libPaths(), "//server2/folder/R_Packages"))
}

If the environment does not
allow the user to install
packages but does allow
packages to be copied to the
network (I know, that sounds
crazy), this approach can add a
path to other packages
locations.

R Configuration Model.docx Page 7 of 7

 “_GlobalSetup.R” Code Explanation
--------- Functions ---------- #

We load any files found in the study function folder location

rFiles <- dir(paste0("/StudyFunctions/"), pattern="*.R")
for (rFile in rFiles) {
 source(paste0("/StudyFunctions/”, rFile))
}
rm(rFile, rFiles)

--#
_GlobalSetup.R end
--#

Here the study has study-
specific functions (not in a
package) that it wants to bring
in for every program.

5. and 6. As noted above, the “_GlobalSetup.R” modifies the environment, and then the remaining
“_ProjectSetup.R” code modifies the environment.

6. The calling R Markdown program now does whatever it is meant to do. The key point is that whatever
program code is written, should be after calling “_ProjectSetup.R” so the global- and study-specific
information are already available.

7. The End!

Thoughts for the future
This method is not without drawbacks. Some of the things coded here would be unnecessary if computing
environments were automatically standardized and had what users needed. This method can help get around
those limitations. I am sure better minds will look and chuckle at how kludgy this is. Drop me a note, I would
be glad to incorporate any better practices/better code methods.

	Definitions
	Summary
	Background
	Design Concept
	General Flow
	Detail
	Thoughts for the future

