
 R Markdown Template Example
Last Update: 12-Aug-25

R Markdown Template Example.docx Page 1 of 6

Summary
This paper covers an example R Markdown template file. While it is itself part of a larger general workflow
structure that I created, it can provide insight into basic concepts useful for a template program. The paper
assumes a working knowledge of R syntax and R Markdown.

Background
Using a template can speed up development, reduce errors, produce a consistent look, feel and execution.
The R Markdown template was produced to give anyone (programmer or not) a fast way to write code that
produces output and allows repeatability.

General Structure
We will now show the general flow of the parts.

1. YAML section customizes the output behavior and
content

2. Version chunk (in R) documents changes to the program.

3. Libraries/setup chunk (in R) brings in the libraries and
calls the configuration file (see the R Configuration
Model).

4. Sample code chunk(s) (in R or other languages) can be
repeated as needed for the programming needs.

5. Sample documentation chunk (in R) provides a
standardized approach to documentation the work
products of the program.

6. Session Info chunk provides metrics and a description of
the session that created the output.

R Markdown Template Example.docx Page 2 of 6

Detailed Structure
The sample R Markdown template is bare-bones example of the template concept. For some of my work, I
create function specific templates (e.g., MatchIT template, Geospatial joining, etc.) Those have specific
parameters and options, whereas the example below is meant to show basic functionality.

A sample .RMD file Explanation

title: "Step00-Blank"
subtitle: |
 | Description/Purpose
 | Study

author: "Author"
date: "`r format(Sys.time(), '%d %B, %Y %H:%M')`"
output:
 html_document:
 keep_md: no
 theme: cerulean
 toc: yes
 toc_depth: 4
 toc_float: true
 code_folding: show # hide

knit: (function(input, ...) { rmarkdown::render(output_dir="Output", input,
output_file = paste0(xfun::sans_ext(input), '-', format(Sys.time(),
"%Y%m%d-%H%M%S"), '.html'), envir = globalenv())})

Example from a program

Example output (notice the “Code” button on the right which can globally show/hide code)

YAML (https://yaml.org/)
controls the output.

For purposes of this paper, the
items in yellow are edited and
modified to show their use.

The theme value can be used to
change the theme of the
output.
https://www.datadreaming.org/posts/2018-
04-11-r-markdown-theme-gallery/2018-04-
11-r-markdown-theme-gallery.html

Code folding is an extremely
useful tweak. You can show or
hide all the code with a toggle
at the top and above each
individual code section in the
output.

The knit: call does the work of
identifying where and how to
name the output. In this case,
the output goes into a subfolder
called “Output” and is named
based on the input file, and
date/timestamp.

In the example on the left, a
custom .css file was written to
put a logo on top of the table of
contents.

Each row in the table of
contents relates to a specific
section chunk in the program.

https://yaml.org/
https://www.datadreaming.org/posts/2018-04-11-r-markdown-theme-gallery/2018-04-11-r-markdown-theme-gallery.html
https://www.datadreaming.org/posts/2018-04-11-r-markdown-theme-gallery/2018-04-11-r-markdown-theme-gallery.html
https://www.datadreaming.org/posts/2018-04-11-r-markdown-theme-gallery/2018-04-11-r-markdown-theme-gallery.html

R Markdown Template Example.docx Page 3 of 6

A sample .RMD file Explanation
```{r VersionInfo} 
#----------------------------------------------------------------------# 
# Version History 
# 202x mm dd - 1.00 - Author - Initial production version.   
#  
#  
#----------------------------------------------------------------------# 
```  

Example from a program (notice the “Hide” button on the right)

Best practice suggests you
document changes to code.
Even in less formal
programming, it is useful to put
a high-level note and version
programs when you make
meaningful changes to a
program.
Having the boilerplate chunk in
a template can (hopefully) help
people document changes.

```{r libraries} 
 
library(packageX) 
 
source("_ProjectSetup.R") 
 
``` 

```{r, code = readLines("_ProjectSetup-Khochma.R"), echo=TRUE, eval=FALSE} 
```  

Example from a program
Libraries and code files

We store local settings in _ProjectSetup.R which calls the _GlobalSetup.R.

```{r libraries} 
 
library(package) 
 
source("_ProjectSetup.R") 
 
``` 

Example output

These two chunks are examples
of bringing in packages.

The second chunk is a
workaround for ensuring the
“_ProjectSetup.R” code appears
as a code chunk in the output.
Doing it this way allows you to
show/hide the code chunk,
instead of having it appear as
output.

In the output on the left, you
can see the source statement
and below it is the produced
output.

Below that is the start of
showing the code in
“_ProjectSetup-Khochma.R” for
documentation completeness.

R Markdown Template Example.docx Page 4 of 6

A sample .RMD file Explanation
Section

Description of the section.

```{r Section} 
 
   # Your Code Here 
 
``` 
Back to top

Example from a program

Example output

This sample section and chunk
let you name a section and
describe it in as much detail as
you want using R Markdown.

It is important to ALWAYS use
unique names in the {r Section}
statement. You cannot knit a
document if there are sections
with the same name.

This html code produces a
simple “back to top” in the
output.

As we move through the
document, the TOC reflects
what section we are in.

Examples of bold and italics are
shown in the R Markdown text
as well.

You can see the “back to top”
link in action.

R Markdown Template Example.docx Page 5 of 6

A sample .RMD file Explanation
Document and save {.tabset}

We save the files into and document.

```{r Document, results='asis'} 
 
 
 
``` 

Back to top

Example from a program

Example output

This section and code chunk
have some interesting
capabilities. The {.tabset}
statement will use tabs in the
output (instead of vertically
placing the output) which is
useful if you have a few dozen
datasets you are looping
through to produce
documentation for.

The cat("\n### " …
statement at the 3rd level (3
hash tags means 3rd level)
places the output in its own tab.

We see two tabs:

· FlexTable
· Summarytools dfSummary

Clicking on each brings up the
associated output.

R Markdown Template Example.docx Page 6 of 6

A sample .RMD file Explanation
Session Info

```{r SessionInfo, echo=FALSE} 
 fnSessionInfo() 
```  

Example output

This section and chunk are
boilerplate and call a custom
written function based on the
package SessionInfo. It
produces documentation and
metrics.

In the example to the left, you
can see the following:
· the input program name
· where it was located
· who ran it on what computer
· when it ran
· how long it took to run
· what version of R was used
· what operating system
· locale information
· R package information,

including version number

	Summary
	Background
	General Structure
	Detailed Structure

