
NoCode ReCode
Last Updated 2025-08-17

NoCode Recode Example.docx Page 1 of 3

 Summary
This paper describes a meta-data approach to recoding/upcoding and translating data in R data frames.
It generates an Excel workbook, which is edited and then used to generate the recode information in a
later step. The paper assumes a working knowledge of R syntax.

Background
Some common reasons to change data are typos or variations (e.g., “auto” and “automobiles”),
combining categories (e.g., treading “Apartments-Condo”, “Condo”, “Standard Condo”), etc. I
developed this process to handle another reason: dealing with foreign characters in English-centric
editors. It can be difficult to type Unicode characters with punctuation and quotations in an editor and
have it work correctly.

The NoCode ReCode functions demonstrated below solved that issue.

Design Concept
The process is generic in that it intentionally doesn’t need to know anything about the data, only that
you want to generate lists of the frequencies and values in one or more fields. A content expert can
then review the information to help with corrections, and the resulting information is then used by R to
apply the changes.

Detail
Example code (Generating the metadata) Explanation
 # list of fields to explore, possibly translate

 variableList <- colnames(TestData)

 # Specify the workbook location and name

 workbook <- paste0(workingDir,
 "Corrections-Raw-Draft.xlsx")

 # Generate the workbook

 fnCreateMetaList(TestData,
 workbook,
 variableList)

The “variableList” is a vector of the fields in a
data frame (“TestData”) that you want to
examine. You can do all, but if you have a
dataset with millions of unique IDs in a field,
then it may exceed your spreadsheet’s
maximum. In those cases, it is better to get a
sense of what fields are worth exploring and
explicitly identify them.

“workbook “specifies the location and name of
a workbook. You can name it however you
like, but we recommend you put “-Draft” at
the end to distinguish the generated version
from the edited version.

The “fnCreateMetaList()” function is then
called.

NoCode Recode Example.docx Page 2 of 3

The folder shows the generated Excel workbook and the saved input dataset.

We copy and rename the workbook. The edits we want will be put in the renamed workbook.
Renaming ensures it won’t get overwritten if the code is rerun.

The pre-edited sheet for the “platform” field appears below.

The “Freq” contains the number of occurrences in the data, “OriginalValue”column has the actual
values and “RevisedValue” will contain the values we want use instead. “Comment” is an optional field
where you can put notes or additional information (such as why the choice was made).

When finished, the sheet now has the recodes in the “RevisedValue” column.

In the field “Skipped” we see an example of changing the Yes/No to the foreign language equivalent of
Skipped/Not skipped. Not only does this show the connection between the original and the revised, but
it avoids the difficulty of typing foreign characters in an English-centric environment.

NoCode Recode Example.docx Page 3 of 3

In the field “reason_start” we show a recode of words with number values instead of text.
IMPORTANT The process cannot change the underlying type of the field during this process
because of how the changes are applied. If you need to both recode AND change the field type, then
after you have finished the recode process, you can use simple code to revise the field type:
(e.g., dplyr) mutate (var = as.numeric(var))

To apply the metadata, we run the following code:

Example code (Applying the metadata) Explanation
list of fields to correct after examination

variableList <- c("reason_start", "platform", "shuffle",
"skipped")

designate the workbook name and location

workbook <- paste0(workingDir, "Corrections-Raw.xlsx")

Apply the corrections

TestDataUpdated <- fnCorrectFields(TestData,
 workbook,
 variableList,
 "_original")

The “variableList” contains just those
fields to be recoded.

The workbook is the edited version, not
the “-Draft-“

There is an optional parameter where
we can specify what suffix to place on
the original values. The default is
“_old” but you can put anything you
want.

Later, you can want to remove all the
original variables with this suffice, just
use that text pattern.

The finished dataset:

	Summary
	Background
	Design Concept
	Detail

